A differential Galois approach to path integrals
نویسندگان
چکیده
منابع مشابه
Path Integrals Without Integrals∗
Recently, we have developed an efficient recursive approach for analytically calculating the short-time expansion of the propagator to extremely high orders for a general many-body quantum system. Here we give brief overview of this approach and then demonstrate application of this technique by numerically studying the thermodynamical properties of a rotating ideal Bose gas of Rb atoms in an an...
متن کاملRecursive Schrödinger equation approach to faster converging path integrals.
By recursively solving the underlying Schrödinger equation, we set up an efficient systematic approach for deriving analytic expressions for discretized effective actions. With this, we obtain discrete short-time propagators for both one and many particles in arbitrary dimension to orders that have not been accessible before. They can be used to substantially speed up numerical Monte Carlo calc...
متن کاملPolymer density functional approach to efficient evaluation of path integrals.
A polymer density functional theory (P-DFT) has been extended to the case of quantum statistics within the framework of Feynman path integrals. We start with the exact P-DFT formalism for an ideal open chain and adapt its efficient numerical solution to the case of a ring. We show that, similarly, the path integral problem can, in principle, be solved exactly by making use of the two-particle p...
متن کاملPath Integrals for Stochastic Neurodynamics Path Integrals for Stochastic Neurodynamics
We present here a method for the study of stochastic neurodynamics in the framework of the "Neural Network Master Equation" proposed by Cowan. We consider a model neural network composed of two{state neurons subject to simple stochastic kinetics. We introduce a method based on a spin choerent state path integral to compute the moment generating function of such a network. A formal construction ...
متن کاملControlled differential equations as Young integrals: a simple approach
The theory of rough paths allows one to define controlled differential equations driven by a path which is irregular. The most simple case is the one where the driving path has finite p-variations with 1 6 p < 2, in which case the integrals are interpreted as Young integrals. The prototypal example is given by Stochastic Differential Equations driven by fractional Brownian motion with Hurst ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2020
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.5134859